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ABSTRACT 
There are several different ways to represent space- 
craft attitude and its time rate of change. For spinning 
or momentum-biased spacecraft, one particular repre- 
sentation has been put forward as a superior para- 
meterization for numerical integration. Markley has 
demonstrated that these new variables have fewer 
rapidly varying elements for spinning spacecraft than 
other commonly used representations and provide ad- 
vantages when integrating the equations of motion. 
The current work demonstrates how a Kalman filter 
can be devised to estimate the attitude using these new 
variables. 
The seven Markley variables are subject to one con- 
straint condition, making the error covariance matrix 
singular. The filter design presented here explicitly 
accounts for this constraint by using a six-component 
error state in the filter update step. The reduced dim- 
ension error state is unconstrained and its covariance 
matrix is nonsingular. 

1. INTRODUCTION 

Attitude estimation for a torque-fiee spinning space- 
craft reduces to a comparatively simple problem if the 
angular momentum vector lies along the major prin- 
cipal axis. In this case, the spin axis remains constant 
in both the body fiame and the inertial h e ,  and 
mean values for the spin direction, period, and phase 
can be determined using a batch method. 

It is more difficult to estimate a timedependent atti- 
tude, such as occurs during maneuvers or when wire 
booms or other appendages are vibrating. Even in the 
absence of torques, the angular momentum will nutate 
in the body fiame if it is not parallel to a principal 
axis. This effect can be important in case of a failure 
in the nutation damper. 

For these reasons, a new attitude determination utility 
for spinning spacecraft is being developed by the 
Flight Dynamics Analysis Branch at the National 
Aeronautics and Space Administration (NASA) God- 
dard Space Flight Center. This paper describes the 
Kalman filter design proposed for this utility. 

Attitude estimation methods for non-spinning, three- 
axis stabilized spacecraft often make use of the Euler 

symmetric parameters (commonly called the quater- 
nion) to represent the body attitude with respect to an 
inertial reference fiame [ 11. The quaternion is a four- 
component, globally nonsingular attitude representa- 
tion. The state vector typically has seven components 
consisting of the quaternion plus three elements that 
provide bias corrections to the measured rates. How- 
ever, spinning spacecraft usually do not carry rate- 
sensing gyros, so the rotation rate vector itself must be 
estimated rather than just the biases. Rates are needed 
for time propagation since the attitude dynamics 
satisfy a 2"d-order differential equation. 

One disadvantage of using the quaternion for spinning 
spacecraft is that all four components generally are 
rapidly varying. It is shown in [2] that alternative 
descriptions can be devised that have fewer rapidly 
varying elements, and thus, are easier to integrate nu- 
merically. These elements will be referred to here as 
Markley variables. The main goal of this paper is to 
present a design for an extended Kalman filter to esti- 
mate the attitude using these new variables. This filter 
is expected to have superior convergence properties 
compared to one using the quaternion and rates to r e p  
resent attitude dynamics. The Markley variables used 
in this paper form a set of seven parameters, defined 
in Section2. Section3 presents the Kalrnan filter 
design. 

One major complication is that the Markley variables 
are subject to a constraint condition. This constraint 
makes the state errgr covariance singular. However, 
only six parameters are required to represent the atti- 
tude dynamics (e.g., roll, pitch, yaw, and their time- 
derivatives). It is always possible to define a six- 
element error state that is unconstrained. Section4 
presents a new formulation of the filter based on a 
reduced, unconstrained, six-component representation 
for the state update and error covariance. Section 5 
gives a summary and plans for fihue work. 

2. MARKLEY VARIABLES 

The seven variables of the attitude dynamics repre- 
sentation described in [2] are the angular momentum 
in an inertial attitude reference fiame (typically the 
geocentric inertial h e ) ,  LI, the angular momentum 
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in the body fiame, LB and a rotation angle, 5; defined 
below. (Vectors will be denoted with bold characters.] 
These are subject to the constraint that the magnitude 
of the angular momentum vector is the same in the 
inertial and body frames. 

The angle <can be defined in a number of different 
ways. For this paper, Markley’s second representation 
will be used, as follows. An intermediate frame is 
defined by the rotation matrix 

- L,L; + L ~ L ; ]  

where I is the 3x3 identity, L is the angular momen- 
tum vector, L is its magnitude, and the subscripts Z, B, 
and E refer to the inertial, body, and intermediate 
frames. This definition is nonsingular as long as the 
angular momentum is nonzero and the body f i m e  is 
not rotated exactly 180degrees fiom the inertial 
fiame. (In practice, this geometric limitation can be 
circumvented by introducing extra rotations to re- 
define the inertial reference frame as needed.) 

The definition of AH uses the angular momentum ex- 
pressed in both inertial and body fiames. Caution is 
needed because of this mixing of frames; in the con- 
text of Eqn. 1, the LB and LI cannot be thought of as 
representations of an abstract vector. 

The matrix A n  has the property that 

AuLI = LB (2) 

The attitude matrix, ABI, is the transformation fiom the 
inertial to the body frame; thus, 

The AEI and ABI matrices both transform LI to LB, but 
differ by a rotation about LB. This distinction is seen 
as follows. Define matrix ABE in terms of AH and AB[, 

then multiply LI by ABI and use Eqn. 4, 

With Eqns. 2 and 3, this becomes 

Thus, ABE represents a rotation about LE. 

Let the ABE rotation define the angle 5; so ABE can be 
written [I] 

1-CQsq S i n 6  
L2 L 

L,L; - - [L~x]  (7) A,=cosCI+  

where the cross-product matrix is defined as 

for any vector v. 

2.1 Equations of Motion 

Expressions for the time dependence of the Markley 
variables are needed to propagate the attitude between 
sensor updates in the sequential filter. The angular 
momentum in the inertial fiame satisfies the equation 
of motion 

dt - 
where NI is the total external torque. The correspond- 
ing equation of motion expressed in the body fiame is 

where 

= J-’ (LB - hB) (1 1) 

is the body rotation rate vector, J is the spacecraft 
moment of inertia tensor, and hB is the angular mo- 
mentum relative to the body frame of any internal 
moving components, The external torque expressed in 
the body fiame is 

Finally, [2] shows that Csatisfies the equation 

-= d c  L [(LB -+ L ~ ) . m ~ ~  ( L ~  L ~ ) - ( N ~  +N~)] (13) 
LZ -I- LB LI dt 

3. KALMANFILTER 

There are two main parts that need to be specified for 
a Kalman filter design: the propagation step and the 
update step for both the state vector and the state 
covariance matrix. These steps are discussed in Sec- 
tions 3.1 and 3.2. Other details about Kalman filtering 
for spacecraft applications can be found in [3], for 
example. 



3.1 Time Propagation 

Section 2.1 presented the equations of motion for the 
Markley variables. These equations can be integrated 
numerically to propagate the full seven-component 
state forward in time between sensor observations. In 
the test version of the filter currently being developed, 
the time integration is implemented using a simple 
2"d-order accurate Euler method (time-centered), with 
the total torque expressed as a sum of the command 
torques and environmental torques fiom gravity grad- 
ient and residual magnetic dipole perturbations. The 
constraint on the norm of L can be approximately 
maintained by using the average of the norms of LB 
and LI at each step, or LI can be forced to have norm 
exactly equal to that of L B ,  as seen below. 

The state error covariance matrix, P, is defined as the 
expectation value of the outer product of the state 
errors, P = E[W&].  This is a 7x7 matrix. However, 
since the norms of LB and LI are constrained to be 
equal, P is of rank 6. Anticipating this problem and 
the resolution that will be given below in Section 4, 
the full state vector now is defined to be 

x =  r"l LB 

where iI is the unit vector in the direction of the 
inertial h n e  angular mommtm. This state vector 
still has seven-components, but the constraint now is 
that the 6rst three elements have unit norm. 

The 7 x 7  error covariance, P, satisfies the equation 

(15) dP 
-= FP+ PFT +Q(t) 
dt 

where at) is the process noise, and F is obtained 
fiom the state dynamics equation, 

with 

The function f@,,t) is given by Eqns. 9, 10, and 13, 
except that Eqn. 9 now becomes 

With this change, the expression for F is 

1 F = [  03, [LE Xp"- [J"LB X I  o,, 
-(j1 . N , I + L ~ N ; ) / L  -(z-i1i;)ivl~;i~~ o,, 

dlL/(Lz + LI - LB) dEL/(L2 + LI * L E )  O,,, 

(19) 
with 

dI = -Li + &-'LE r + (NE + NI r b B  X ]  (20) 
dt 

and 

dE = -(iB + ir r 2 + (J-'L, r - (NB + NI r [iB x]/L 

+(LB + LI J-' + (il - J-' iB k 
- (iE x il). ( N ~  + ~ ~ ) i ;  / L  (2 1 

3.2 Sensitivity Matrix 

The sensitivity, H, is the matrix of partials of the 
sensor observation with respect to the state X. Only 
vector observations are considered here. For example, 
the output fiom V-slit Sun and star sensors and 
magnetometers are vectors. For these sensors, H is a 
3x7 matrix. 

Body fiame vector observations can be modeled as 

where vI and VB are the reference vector expressed in 
the inertial fiame and body fiame, respectively, A,, is 
the current estimate of the attitude matrix, a is the 
negative of the unknown attitude error vector, and n 
represents random noise with covariance R. Thus, the 
partial ofvBobs with respect to a is -[VEX]. Using a in 
the error state rather than -a simplifies signs else- 
where when constructing a quaternion filter. 

Similarly, the negative attitude error, g can be related 
to the attitude quaternion, so that 

where q is the vector part of the quaternion and 94 is 
its fourth component. 



Next, the attitude quaternion can be expressed as a 
function of the Markley variables, and the partials of q 
with respect to X can be determined. This yields 

and 

where 

c, =-  (LB LI)LL: l2 + L[L, (27) 
L ' + L ~ - L ~  

c, = -(LB x L* (& + ( L ~  + L~ i2)*) - [L, (29) 
L1 LZ + LI . LB 

and 

The 3x7 sensitivity matrix is obtained by combining 
all these pieces using the chain rule, 

4. REDUCED REPRESENTATION 

The state error covariance is a 7x7 matrix of rank 6. It 
can be difficult numerically to maintain P as a rank 6 
matrix during the filter propagation and update steps. 
To avoid this problem entirely, it is preferable to cast 
the filter in terms of a six-component error state, 
reducing the dimensionality of the covariance matrix 
and the filter update. 

Sections 4.1 and 4.2 derive several relationships that 
are needed in Section 4.3 where the reduced form of 
the filter is presented. In particular, the reduced state 
vector is presented in Section 4.2. 

4.1 Unit Vector Covariance 

The 3x3 block of P corresponding to the uncertainty 
in the unit vector angular momentum can be related to 
the covariance corresponding to the 3-vector LI as 
follows. If the estimated angular momentum and its 
error are written 

L ' = L + G L  (32) 

where 6L has zero mean, then the corresponding unit 
vector and its error are 

where the subscript I has been dropped here for 
simplicity. If the angular momentum covariance is 

p L  = ElaLGL* J (34) 

then the covariance of its unit vector is 

4.2 Reduction to CComponent State 

Next, construct the matrix M that rotates the Z-axis of 
the inertial fiame to be parallel to LI. With this trans- 
formation, it is possible to reduce the dimensionality 
of the state simply by discarding the third component 
of juriI , which is manifestly equal to unity. Only the 
X- and Y-components are kept since they can deviate 
f?om zero in the 1" order at the update step. The state 
update is shown explicitly in Section 4.3. 

To this end, define 

M = ICOS 9 + (1 - cos8&iT +sin$[& x]  (36) 

where 9 is the angle between the Z-axis and LI, and 

(37) 

With this definition, one has 

by construction. Also, define 



One can show that 

Now, define the six-component state to be 

where ST is the 6x7 matrix 

The m23 matrix in Eqn.41 explicitly removes the Z- 
component of the rotated unit angular momentum 
vector. Eqn. 41 also shows that 

One can show that STS = 16x6 and 

(43) 

= S S ~  + Z,  (44) 

using Eqn. 40, and where 16x6 and 17x7 are the 6x6 and 
7x7 identity matrices, and with ZL defined as 

4.3 Reduced Form for the Filter 

The 6x6 covariance matrix for the reduced state now 
can be defined as 

With time derivative 

= STF(SST + ZL)PS (47) 

+ STP(SST + ZL)FTS + STQ(t)S 

where the identity 1 ~ ~ 7  has been introduced in the form 
given in Eqn. 44. The time-dependence of S has been 
neglected. In the absence of external torques, S is 
exactly constant, and in practice, the time-dependence 

is small over each short numerical integration interval. 
Recomputing S once for each time step should be suf- 
ficiently accurate for propagation of the covariance. 

Note that 

PZ, =Z,P=O (48) 

since LI is annihilated by the unit vector covariance, 
as shown by Eqn. 35. Thus, one can detine 

F = S T F S  (49) 

and 

to obtain a reduced covariance propagation equation, 

which is of the same standard form as Eqn. 15 and 
carries the same information content, but is not 
subject to any constraint condition. 

Similarly, the 7x3 Kalman gain 

can be written in a reduced 6x3 form by introducing 
17x7 from Eqn. 44. Thus, 

STK = STP(SST +Zz)HT 

[H(SST + Zz)P(SST + ZLkT + R r  (53) 

= F R T [ i m + $  
- 

EEK 

where R is the covariance ofthe sensor noise, n, in 
Eqn. 22, and where the reduced 3x6 sensitivity matrix 
is defined as 

Finally, the state update is 

sx = K(vF - v;f) (55)  

The 3d, 4*, and 5* elements of the update vector 6x 
are added to the a priori estimate of LB. The 6* 
element of 6x is added to the a priori estimate of 5: 
The 1' and 2"d elements of 6x are corrections to the 
unitized angular momentum vector in the rotated 
&me; the corresponding a priori elements of x are 



zero by construction. Thus, the updated inertial h e  
unitized angular momentum vector is 

where M is given by Eqn. 36. The full vector LI can 
be recovered at any time fiom il and the norm of LB. 

5. CONCLUSIONS 

An extended Kalman filter design has been presented 
for spinning spacecraft that makes use of the Markley 
variables. The Markley variables have much less vari- 
ability than other attitude representations such as the 
quaternion and rotation rate for spinning spacecraft, 
even in the presence of nutation or attitude man- 
euvers. This behavior makes them more suitable for 
use in an attitude determination algorithm. 

The Markley variables are a seven-parameter set sub- 
ject to one constraint condition. The constraint leads 
to a singular error covariance mairix. A method was 
given for reducing the error state in the filter update 
step to six independent components, resulting in a 
nonsingular 6x6 error covariance matrix. 

The convergence properties of a Kalman filter for 
spinning spacecraft using the Markley variables are 
expected to be superior to those of a filter using the 
quaternion attitude representation. A prototype system 
is being developed to study the filter perfbmance. 
Much additional work is needed before this filter can 
be migrated to the operatimal environment. In par- 
ticular, the filter must be able to accept the different 
measurement types used on spinning spacecraft. Only 
vector sensors were treated in Section 3.2. The form 
of the H matrix will be somewhat different for each 
sensor type; although, the steps leading to Eqn. 3 1 
will be similar for all sensors. 

Another feature that must be included in an oper- 
ational version of the filter is the ability to handle the 
180 degree restriction in the Markley variables. The 
denominator in Eqn. 1 goes to zero if LB’LI = -Lz, that 
is, if the body fiame is rotated 180 degrees fiom the 
inertial fiame. It is possible to redefine the inertial 

reference fiame with an extra rotation whenever the 
body-to-inertial ftame angle agprnaches 180 degrees. 
Then, to reconstruct the usual attitude, it is only a 
matter of bookkeeping to keep track of the times these 
extra rotations were applied. A similar problem occurs 
in Eqn. 37 if LI and 2 are 0 or 180 degrees apart. The 
matrix M given by Eqn. 36 then is undefined. In these 
cases, M is either the identity or an arbitrary rotation 
by 180 degrees, and the component of LI to be dis- 
carded is already known to be parallel to 2. 

Another major enhancement would be to estimate 
sensor biases along with the attitude dynamics state. 
The ability to estimate these biases is already an 
important part of the current batch-method spinning 
spacecraft attitude determination system, where the 
spin vector is assumed to be constant for the entire 
batch. However, sensor biases may not be sufficiently 
observable in the time-dependent case. More work 
will be needed to study this possibility. Nonetheless, 
even the current filter design for estimating only the 
attitude dynamics will add a significant new capability 
to the attitude ground support system used for Flight 
Dynamics support for a number of spinning spacecraft 
missions at the NASA Goddard Space Flight Center. 
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